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Summary

A calibration method for a six-port reflecto-
meter which minimizes the effect of power measure-
ment errors 1is presented. It is based on the
minimization of an error expressions to obtain
estimates of the six-port calibration constants.
A load and four offset shorts are used as reflec-
tion standards. Computer simulation results are
presented to show that the described procedure
substantially reduces the overall error in the
calibration constants.

Introduction

It is well known that the key problem for a
six-port reflectometer is 1its calibration. The
calibration of these devices has been studied
extensively {1-6]. Calibration methods which have
been described in the above mentioned papers do
not take into account errors in power as obtalned
from the detector readings. However, any given
set of power detector readings, Pl’ ooy P4 , will
differ from their true or correct values due to
detector noise or other errors. This contribution
attempts to remedy this situation. The calibra-
tion method described in this paper is based on
the minimization of an error expression to obtain
estimates of the calibration constants.

Computer simulation proves that the method
developed may be effectively used for a single

slx-port reflectometer calibration.

Basic Equation of the Six—Port Reflectometer

For an arbitrary linear sgix-port microwave
reflectometer, the basic relationship between its
network parameters and the power readings can be
expressed as follows:

Py 1428, |Tq |cos (b q+oy )4X2 |1y |2
PR

Py < ey

i 2 2
1+22|T', |cos (¢ ;97 )42 Ty, |

where Py 2 i=171,2,3 are powers measured by three
detectors attached to the six-port, Pp is the
power measured by the reference detector and |Tp|
is the magnitude and ¢7 the phase of the reflec-
tion coefficient to be tested [7]. The other
quantities: Y, Xi’ ¢Xi; i =1,2,3 and Z and bg
are real calibration constants. The purpose of a
calibration procedure 1is to determine these
quantities.
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Calibration Method

A) Determination of the constants Y,5 1=1,2,3.

An examination of Eq. (1) reveals that a
matched load will suffice to determine Yi; i=
1,2,3.

Y 1=1,2,3 (2)

i TPy
The matched load is an absolute standard whose
zero-magnitude reflection coefficent may be
realized as the centroid of the 1locus of the
reflection coefficlient of an imperfect match as
its phase 1s varied.

B) Determination of the constants Z and ¢z'

To determine the remalning calibration con-
stants four unit magnitude offset standards with
reflection phase angles ¢O’ dys 9 and b5 are

used. TFrom Eq. (1) one fets

= T
Az +c = [xxx]Th (3)
and
Azt = [Eﬁb2b3] g 5 1=1,2,3, (%)
where "
Rig  2Rygcosdy —2R1051n¢d
é_ = Rzo 2R20cos¢>0 —ZRZOSinqSO (5)
R3p 2R3pcosdq =2R3gsingg
Ry 2Ryjcosp;  —2Ryysing]
éﬁ = [Ry9 2R12cos¢2 —2R1251n¢2 H (6)
_RiB 2Ri3cos¢3 -2R135{?¢3-
r 1 Ril -1 RlO -1 (7a)
Ej= 2cos¢j 3 c3= {Ryp = 15 e = |Ryg = 115 (7b)
—Zsin¢j Ri3 -1 R3O -1 (7(:)
~ "2 Co2
zy Z %41 Xi (8a)
Z = |zZg} = [Zcosp,f; Xy = IXj5| = |X COSyy *(8b)
.23 Zsin¢z _?iSi"¢xi
Here Ri = pys/¥y, 1 =1,2,3 and § = 0,1,2,3 are

the normalized) powers measured by three power
detectors (1 = 1,2,3) for the four unit magnitude
offset standards with reflection phase angles
$.(3 =0,1,2,3). Eliminating X i=1,2,3 from
(g) and (4) yields

Mz =d %

where M is a 3x%x3 matrix whose elements are:
M) 17Ryg = (RppY+RypVo+Ry3Y3)
My17Roo = (Ry1Y1+RynY o+ Ro574)

572

1984 IEEE MTT-S DIGEST



M317Rg = (Ryp ¥y Ryp7ptRe5Y3) a0
M19=2(Rjgcosdg—2R11Y1cos$1-2R oY 9cosdp9~2R13Y3C08¢3)
M99=2(Rogcosdg-2R91Y jcosd1-2R99Y 9co s$9~2R93Y 3c05¢3)
M39=2(R3gcosd9—2R31Y1c05$1-2R37Y gcoshp~2R33Y3c0os63)
My13==2(Rygsing~2Ry 1Y 151n$ 1 -2R ) yY 9c0s8$9-2R13Y3c08¢3)
My3=—2(Rypsingg-2R91Y 181n¢ 1 ~2R99Y 9cosP—-2Ry3Y3c08¢3)

M33=-2(R3psingg—-2R31Y151in$1-2R39Y 2c0s$9-2R33Y3c08$3)

with v, = %[sin(¢2~¢3)+Sin(¢3-¢0)+51n(¢0-¢2)]
Yy = 2lstn(smb ) Hsin(o ) +sin(sg0y)]
Y3 = 2lsin(e0,)+sin(6 ) +sin(sg-0p)]

m = sin(¢1-¢3) + sin(¢2—¢3) + sin(¢3—¢1)
= -M

4 11

dy = My

dy = M3y
Any given set of power readings Pl’ PZ’ P3 and PR
will differ from their correct values due to

detector mnoise or other error. Thus it 1s not
possible, in general, to choose values for Z and
¢Z such that equation (9) are simultaneously
satisfied. However, one may write

Mz-d=¢ (11)

where g = [61, €9, 83]T .
An estimate of the Z and ¢, calibration constants

can be obtained by choosing z, = Zcosg, and zg =
Zcos$, to minimize a function
=eTe = ¢2 2 2
E=c¢"¢ €] + €5 + €3 (12)
The solution to this is
LIS 9 3€
3E =za1_1+2ez_2+2e3_2=0 (13a)
9z 322 Bzz 322
e de
9E =2e1_+2e2__2+ze3__3_=o (13b)
323 z4 323 2

According to (11) and because z% = z% + z% , (13a)
and (13b) create a set of two nonlinear equations
with two unknowns z, = Zcos¢_  and z3 = Zsin¢z .

It may be solved using for example, the Newton
iterative method [8].

The roots of Eqn.(13) may be computed iteratively
using the formulas

D= 700 1 (o, 30y 33Q3 |
Dz 3z zék)zgk) Bz gk) ()
3Q 3Q (14)
§k+1)__ ng) __(Q -2 ] - 23_3
D, Zy ék) gk) Zy zgk)zgk)
29 20y _ 20, 30
z azz 323 323 322 zék)zgk)

where k is the iteration index, and

Qp = 3E/3zy = 2e(zg+zzz§)+h(3z%+z§+2r2223

+(£+2e)zyttzyth (15a)

Q = 8E/3z3 = 2e(z§+z%z3)+r(3z +z2)+2hz2 3

+(gt2e)zgttzytr (15b)
2 2 2 _ 2 2 2

e = M].l + M21 + M31 H f = Mlz + M22 + M32
2 2 2 . _

g = My + Mjg + M3g 5 h = My My My  My,yHMy Mgy

T o= My MygiMy MygtMa Mgy t = MyoMy 3ty MyytiyyMag
Once z, and z4 have been found, one has

Z =¥ z% + z% » and ¢, = arctan(z3/z,)

C) Determination of the constants X;,b.4; 1=1,2,3
Since Z and ¢, are now known, we can deter-—

(16)

mine the rest of the calibration constants. Using
(4) we get

E.Ei =y 3 i=1,2,3 (17)
where uy = Ay z+cy (18)
and B = [b; b, bs] (19)

Because of errors in the power readings, one may
write (17) in the form

Bx -u =u ;1i=1,2,3 (20)

where 1y = [1g) gy uyal®.

As in the case of Z and ¢,, an estimate of the X
and ¢4y callbration constants can be obtained by
choosing xy5 = Xjcos¢yj and xy3 = Xysingyy to
minimize the function

P _ 2 2 2
Fy = ui wg = 1y +ugp + g3 (21)
The solution to this is
aF au ou du
= 2uyy Lo, 1242, 13 20 (22a)
3X12 9x 3X12 axiz
9F U £ u
Loaonyy —La2ug, 22y 13 20 (220)
Ixyg 3xy3 3x43 %43
According to (20), and because x{, = x22 + x§3 )
(22a) and (22b) create a set of two nonlinear
equations with two unknowns x;, = X,cos¢_, and

xy43 = Xysin¢,y . The roots of (%2) may be
computed iteratively the same way as it has been
done for (13) using (14). This time we have

= = 2
Q2 8F/3xi 6x3 +6x12x13+6ax 2+2ax 4Bx12xi3

+2(2Y—6122—2ziZcos¢z+2€iZsin¢z-6i+3)x12

-4Cxi3+2(a—zi—z122+2KiZsin¢z—ZTiZcos¢Z)
(22)
12%43

+2(2u-6iZ2—2ziZcos¢z+2€iZsin¢2—6i+3)xi3

= = 3 2
Q3 8F/3xi3 6xi3+6x

izxi3—68x%3—25x§2+4ax

~4Tx 4 +2(a-2 2242k Zsing ~2T,%c080 )

with a = cos¢1 + cos¢2 + cos¢3

B = sin¢1 + singyp E singg

Y = cos ¢ + cos b9 + cos ¢3

z = gsin2¢1 +Zsin2¢2 +2sin2¢3)

y = sin bq + sin by + sin ¢3

84 = Ryy + Ry2 + Ryj3

z{ = Ryjcosdy + Rygcospg + Riyjcosdsy
€y = R11s1n¢12+ Ryosingg 5 Rj3sings
Ty = Rilcos ¢, + Ry,co08 by + R;5c08%¢
Ki = O.S(Rils§n2¢1 + Rizs§n2¢2 + Ri3sin2¢3)
ny = Rilsin ¢y + Rizsin by + Ri3sin bq
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As an "initial estimate” for x;2 and %43 to
start the Newton iterative procedure to solve
(22), one may use the solution of the set of three
linear equations given by (17). The calibration
constants X, and ¢ may be found the same way as

i
has been described ?or Z and ¢, .

Computer Simulation

In order to prove the described method three
six-port models are established and simulated with
the computer. Table 1 presents the parameters of
the three six-ports which consist of an ideal one
as suggested by Hansson and Riblet [9], and two
arbitrarily selected non-ideal ones.

Table 1.
Six-port models used in a computer simulation

Six-Port Non-Ideal Non-Ideal

Parameters Ideal #1 #2

z> 2 0.0 0.08e331 [ g.p1¢d- 1437
-jl

xye txl 0.5¢ 2 | 0.58e73:945T | o gpe 3443
5T

xzejq)"‘2 o.seJE— 0.70e3:332m | g 593-751m

. L
xge %3 0.5¢ 8 | 0.36e3:11™ | 0,48e3-1557

The three sets of offset shorts used as calibra-
tion standards are vrelated to the following
practical cases: four shorts with linearly inde-
pendent offset 1lengths, four shorts with equal
offset lengths, and a fixed short/open plus a
known length of precision transmission line.

To examine the efficiency of the proposed
calibration method in improving the accuracy of
the calibration of a six-port reflectometer we
proceeded as follows: random power reading errors
of 2% and 5% were introduced and then the
resultant computed values of the calibration
constants were compared with their true values.

In order to compare the accuracy of the
initial estimate with the final estimate of the
six-port calibration constants, the following
formulae has been taken as a measure of the
overall error of the calibration constants.

sy . 3 o .
IZ'eJ¢z—ZeJ¢z[+ Y ]X'ieJ¢i—XieJ¢i|.
- 1=1 23
M= 3 (23)
zZ+ ) X4
i=1
where the primed symbols are related to the
estimate, and nonprimed symbols to the true value
of the six-port calibration constants. After the
simulation of all possible combinations of the
models of Table 1 and the calibration standard
sets, it has been found that the calibration
procedure, described here, substantially reduces
the overall error of the calibration constants
when random errors exist in the power detector
readings. An example of computer simulation
results is presented in Table 2.

Table 2

Overall errors of the calibration constants

non-ideal six-port reflectometer #1

Offset

Length AL O.1m| 0.27|0.37|0.4%w|0.5%
0% IEOE[ 7] 0.0 | 0.0 0.0 J0.0 [0.0
Error

in PMR FEOE[7] 0.0 | 0.0 [0.0 [0.0 {0.0
27 IEOE[%] [40.31111.56[4.0111.37]1.84
Error

in PMR FEOE[%] 120.71] 9.21(3.60|0.87]1.77
5% IEOE[%Z] [29.64[42.5917.71(3.40(8.42
Error

in PMR FEOE[Z%] [11.97(39.10(4.90(3.13(8.12
PMR - Power Meter Readings

IEOE - Initial Estimate Overall Error
FEOE ~ Final Estimate Overall Error

(1

(2)

(3

(&)

(5)

(6)

(7

(8)

€))
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