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Summary

A calibration method for a six-port reflecto-

meter which minimizes the effect of power measure-

ment errors is presented. It is based on the

minimization of an error expressions to obtain

estimates of the six-port calibration constants.
A load and four offset shorts are used aa reflec-

tion standards. Computer simulation results are

presented to show that the described procedure

substantially reduces the overall error in the

calibration constants.

Introduction

It is well known that the

six-port reflectometer is its

calibration of these devices

extensively [1-61. Calibration

key problem for a

calibration. The

has been studied

methods which have

been desc;ibed in the above mentioned papers do

not take into account errors in power as obtained

from the detector readings. Uowever, any given

set of power detector readings, PI, . . . . P4 , will

differ from their true or correct values due to
detector noise or other errors. This contribution
attempts to remedy this situation. The calibra-

tion method described in this paper is based on

the minimization of an error expreaaion to obtain

estimates of the calibration constants.

Computer simulation proves that the method

developed may be effectively used for a single

six-port reflectometer calibration.

Baaic Equation of the Six–Port Reflectometer

For an arbitrary linear six-port microwave
reflectometer, the basic relationship between its

network parameters and the power readings can be

expressed as follows:

Pi=y l+zx~lr~lcos($x~ti~)+x~lrL12
Pi=q i (1)

l+2zlrL lc0s(OztiL)+z2 lrL12

where pi > i = 1,2,3 are powers measured hv three
detectors attached to the six-port, PR is the

power measured by the reference detector and lrLl
is the magnitude and $L the phase of the reflec-

tion coefficient to be tested [7]. The other

quantities: Yi , Xi, $Xi; i = 1,2,3 and Z and $2
are real calibration constants. The purpose of a

calibration procedure is to determine these

quantities.

Calibration Method

A) Determination of the constants Yi; f = 1,2,3.

An examination of Eq. (1) reveals that a
matched load will suffice to determine Y . i =

1,2,3.
i’

Yi=pi; i = 1,2,3 (2)

The matched load is an absolute standard whose
zero-magnitude reflection coefficient may be

realized aa the centroid of the locus of the

reflection coefficient of an imperfect match as

ita phase is varied.

B) Determination of the constants Z and OZ.

To determine the remaining calibration con-
stants four unit magnitude offset standards with
reflection phase angles $., $1, $2 and $3 are

used. FromEq. (1) one ets- -

-rA Z + c = ~1x2x3]T~— — (3)

and
~l:+:i= [!I!?2!?31Tx~ ; i = 1~2J3> (4)

where

[

R1o 2R10COS$0

1
-2RIosin$0

~ = R20 2R20c0s$0 -2R20sin$0 (5)

R30 2R30cos$0 -2R30sin$0

[

Ri 1 2Rflcos$l -2Ri1sin$l

A = Ri2 i

1;

‘i::i’~$ll::li:
Here Rij = Pf./Y~, i = 1,2,3 and j = 0,1,2,3 are

the normalize? powers measured by three power
detectors (i = 1,2,3) for the four unit magnitude

offset standards with reflection phase angles

$-(j = 0,1,2,3). Eliminatiw~i, i = 1,2,3 from
(~) and (4) yields

Mz=d (9)———

where M is a 3x3 matrix whose elements are:—

‘1 l=RIO - (R~~y~+R12y2+R13y3)

‘21=R20 - (R21Y1+R22Y2+R23Y3)
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‘31=R30
- (R31Y1+R32Y2+R33Y3) (lo)

M12=2(R10cOS+0-2 RllylCOS$l-2R12Y 2COS$2-2R13y3COS $3)

M22=2(R20cos$q3-2R21y lcos$l-2R22Y2c0 S$2-2R23y3COs$3 )

M32=2(R30cosf$0-2R31_f lCOS+I-2R32Y2COS$ 2-2R33y3COSI$3)

M13=-2(R10sin$0-2RllY lsin$l-2R12Y2cos$2-2R13Y3cos$3)

M23=-2(R2osin@o-2R2lylsin$l-2R22Y2cos$2-2R23Y3cos$3)

M33=-2(R30sin$0-2R31y lsin$l-2R32Y2cos02-2R33Y3cos$3 )

with Y1 =

y2 =

y3 =

m=

dl =

d2 =

d3 =

Any given

L[sin($2-$3)+sin($3~o)+sin($0-$2) 1

2[sin($3-$1) s+ in($l-$o)+sin(+o-$s)l

y in(f$l-$2) s;[ s + in($2-$o)+sin($o-$1)1

sin($l-$3) + sin($2~3) + sin($3-$1)

-Ml 1

-“21
-M31

set of power readings PI, P2, ?3 and PR

will differ from their correct values due to
detector noise or other error. Thus it is not

possible, in general, to choose values for Z and

+. such that equation (9) are simultaneously

s~tisfied. However, one may write

Mz-d=c (11)——— —

where
T

E= [~1, ~2, :31 .
An estimate of the Z and @z calibration constants

can be obtained by choosing Z2 = ZCOS+Z and Z3 =

ZCOS+Z to minimize a function

E=ETs=E~+g~+E~ (12)——

The solution to this ia
as 2 ac3

aE =2E ~+2E2_+2E3x=0
Z2 1 az2 a Z2

(13a)

2

a~ = Lc
a:l aE2 a:3

+2E2z+2E3G=o
‘Z3 l=

(13b)

3 3

2- 2+z~, (13a)According to (11) and because Z1 - Z2

and (13b) create a set of two nonlinear equations
with two unknowns z = ZCOSI$Z and Z3 = Zairu$ .

It may be solved using for example, the Newton

iterative method [8].

The roots of Eqn.(13) may be computed iteratively

usin~ the formulas

(k+l). z$+lJQ2~
‘2 Dz

3 ~$k)z$k)

z$k+’)= Z\k)- ~Q3 ~
aQ.j (14)

z 2
Zjk) ,Z$ki ‘2 %

Zjk)z$k)

Dz = [~~ - aQ2 aQ3)
az3 az2 Z$k) (k)

‘3

where k ia the iteration index, and

Q2 = aE/az2 = 2e(zj+z2z~)+h(3z2+z~+2rz2z3

+(f+2e)z2+tz3+h (15a)

Q3 = awaz3 = 2e(z~*~z3)+r(3z~+z~)+2hz2z3

+(g+2e)z3+tz2+r (15b)

~=M~l+M~l+M:l; f = M:2 +M~2 + M~2

g=M:3+M~3+M:3; h = ‘11”12+M21M22+M31M32

r = M~~M13+M21M23~31M3.3; t = M12M13+M22M23+M32M33

Once Z2 and Z3 have been found, one has

Z=-, and$z=arctan(z3 /z2) (16)

C) Determination of the constants Xi,I$xi; i=l,2,3

Since Z and $Z are now known, we can deter-

mine the rest of the calibration constants. Using

(4) we get

Bxi=~i; i=l,2,3.— (17)

where uJ=AJ~+Q (18)

and E= [El P2 Q31T (19)

Because of errors in the power readings, one may

write (17) in the form
‘i=l,2,3=gi, (20)

where u = fu: ~i:Vi3]T.

As in-~he case of Z and @z, an estimate of the X1

and I$JXi calibration constants can be obtained by

choosing xi2 = Xicos~xi and xf3 = Xisin$xi to

minimize the function

Fi=v:pi= Ll;l + IJ;2 + !l;3 (21)

The solution to this is

According

udil a~i2 a~i3 = o
—+2p~2 — +21_Ii3 —
axi3 axi3 axi3

(22b)

to (20), and because x~l =x~2+x~3 ,

(22b) create a aet of two nonlinear(22a) and
equationa with two unknowns xi2 = X coa$xf and

xi3 = Xiain$xi . 3The roots of ( 2) may be

computed iteratively the same way as it haa been
done for (13) using”. This time we have

Q2 = aF/axi2 = 6xj2+&2x;3+6ax:2+2ax$3-4f3x12xf3

+2(2y-6iZ2-2ziZc0s$z+2siZsin$z-fj i+3)xi2

-4<x13+2(a-zi-zi Z2+2KiZsin$z-2TiZcos$z)

Q3 = aF/axi3 = 6x~3+6x~2xi3-6$x~3-26x~2+4axi2~~)

+2(2~-6iZ2-2ziZcos$z+2ciZsin$z-6i+3)xi3

-4Cxi3+2(a-ziZ2+2KiZsin$z-2TiZcoa$z)

with a = Cos$l + COS+2 + COS+3

,6 = sin$~2+ sin$2 j sin$3
y. Cos $1 + Cos $2 + co&3

i
3 = 0.5 sin2$ 1 +2s in2$2 +2sin2~3)
p = sin +1 + sin $2 + sin $3

6i = Ril + Ri2 +Ri3

Zi = RilcoSf)l + Ri2cos$2 + Ri3cos$3

~i = Rilsin@12+ Ri25in$2 ~ Ri3sin$3

‘i =
Rilcos ~1 + Rf2CIX 4’2 + Ri3COS2$J3

~i = 0.5(Rils~n2$l + Ri2a.jn2$2 +Ri3sjn2$3)
vi = Rilsin $1 + Ri2sin 4’2 + Ri3sin $3
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As an “’initial estimate” for xi2 and xi3 to
start the Newton iterative procedure to solve
(22), one may uae the solution of the set of three
linear equations given by (17). The calibration
constants X and $ ~ may be found the same way as

has been des~ribed ?or Z and $Z .

Computer Simulation

In order to prove the described method three

six-port models are established and simulated with

the computer. Table 1 presents the parameters of

the three six-ports which consist of an ideal one

as suggested by Hansson and Riblet [9], and two

arbitrarily selected non-ideal ones.

Table 1.
Six-port models used in a computer simulation

Six-Port Non-Ideal Non-Ideal
Parameters Ideal #1 #2

ZeJq z 0.0 0.08ej”31T
o.21ej.143m

j$’xl
- j;

Xle 0.5e
o.58e-j.945r O,62e-j443T

~

X2e
j$x2

0.5e 6 o.70ej.532r o.52ej”751m

j0x3
j:

X3 e 0.5e 0.36ej”11m 0.48ej”155°

The three sets of offset shorts used as calibra-
tion standards are related to the following
practical cases: four shorts with linearly inde-

pendent offset lengths, four shorts with equal
offset lengths, and a fixed short/open plus a
known length of precision transmission line.

TO examine the efficiency of the proposed
calibration method in improving the accuracy of

the calibration of a six-port reflectometer we
proceeded as follows: random power reading errors
of 2% and 5% were introduced and then the
resultant computed values of the calibration

constants were compared with their true values.

In order to compare the accuracy of the
initial estimate with the final estimate of the

six-port calibration constants, the following

formulae has been taken as a measure of the
overall error of the calibration constants.

\Z’ej4i-ZejOzl+~ lX’iej$4-Xiej$il

M=
i=l

3
(23)

z+~ xi

i=l
where the primed symbols are related to the
estimate, and nonprimed symbols to the true value
of the six-port calibration constants. After the
simulation of all possible combinations of the
models of Table 1 and the calibration standard

sets, it has been found that the calibration
procedure, described here, substantially reduces

the overall error of the calibration constants
when random errors exist in the power detector
readings. An example of computer simulation
results ie presented in Table 2.

Table 2
Overall errors of the calibration constants

non-ideal six-port reflectometer #1

Offset

Length Al. o.liT 0.211 0.3K o.4r O.slr
0% IEOE [ %] 0.0 0.0 0.0 0.0 0.0

Error

in PMR FEOE [ %] 0.0 0.0 0.0 0.0 0.0

2% IEOE[%] 40.31 11.56 4.01 1.37 1.84

Error

in PMR FEOE [% ] 20.71 9.21 3.60 0.87 1.77

5% IEOE[%] 29.64 42.59 7.71 3.40 8.42

Error
in PMR FEOE [ %] 11.97 39.10 4.90 3.13 8.12

Pm - Power Meter Readings

IEOE - Initial Estimate Overall Error

FEOE - Final Estimate Overall Error
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